skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lai, Ru-Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider an inverse problem for the nonlinear Boltzmann equation with a time-dependent kernel in dimensions n \geq 2. We establish a logarithm-type stability result for the collision kernel from measurements under certain additional conditions. A uniqueness result is derived as an immediate consequence of the stability result. Our approach relies on second-order linearization and multivariate finite differences, as well as the stability of the light-ray transform. 
    more » « less
  2. Abstract We study the inverse problem of recovering the doping profile in the stationary Vlasov–Poisson equation, given the knowledge of the incoming and outgoing measurements at the boundary of the domain. This problem arises from identifying impurities in the semiconductor manufacturing. Our result states that, under suitable assumptions, the doping profile can be uniquely determined through an asymptotic formula of the electric field that it generates. 
    more » « less
  3. We prove that the knowledge of the Dirichlet-to-Neumann map, measured on a part of the boundary of a bounded domain in Rn, n\geq 2, can uniquely determine, in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and the scalar electric potential, both being nonlinear in the solution. 
    more » « less
  4. We study the inverse problem for the fractional Laplace equation with multiple nonlinear lower order terms. We show that the direct problem is well-posed and the inverse problem is uniquely solvable. More specifically, the unknown nonlinearities can be uniquely determined from exterior measurements under suitable settings. 
    more » « less